Smooth Atlas
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a smooth structure on a
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
allows for an unambiguous notion of
smooth function In mathematical analysis, the smoothness of a function (mathematics), function is a property measured by the number of Continuous function, continuous Derivative (mathematics), derivatives it has over some domain, called ''differentiability cl ...
. In particular, a smooth structure allows one to perform
mathematical analysis Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (m ...
on the manifold.


Definition

A smooth structure on a manifold M is a collection of smoothly equivalent smooth atlases. Here, a smooth atlas for a topological manifold M is an
atlas An atlas is a collection of maps; it is typically a bundle of maps of Earth or of a region of Earth. Atlases have traditionally been bound into book form, but today many atlases are in multimedia formats. In addition to presenting geographic ...
for M such that each transition function is a
smooth map In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over some domain, called ''differentiability class''. At the very minimum, a function could be considered smooth if ...
, and two smooth atlases for M are smoothly equivalent provided their
union Union commonly refers to: * Trade union, an organization of workers * Union (set theory), in mathematics, a fundamental operation on sets Union may also refer to: Arts and entertainment Music * Union (band), an American rock group ** ''Un ...
is again a smooth atlas for M. This gives a natural
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation ...
on the set of smooth atlases. A
smooth manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
is a topological manifold M together with a smooth structure on M.


Maximal smooth atlases

By taking the union of all atlases belonging to a smooth structure, we obtain a maximal smooth atlas. This atlas contains every chart that is compatible with the smooth structure. There is a natural one-to-one correspondence between smooth structures and maximal smooth atlases. Thus, we may regard a smooth structure as a maximal smooth atlas and vice versa. In general, computations with the maximal atlas of a manifold are rather unwieldy. For most applications, it suffices to choose a smaller atlas. For example, if the manifold is
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in British ...
, then one can find an atlas with only finitely many charts.


Equivalence of smooth structures

Let \mu and \nu be two maximal atlases on M. The two smooth structures associated to \mu and \nu are said to be equivalent if there is a
diffeomorphism In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable. Definition Given two m ...
f : M \to M such that \mu \circ f = \nu.


Exotic spheres

John Milnor John Willard Milnor (born February 20, 1931) is an American mathematician known for his work in differential topology, algebraic K-theory and low-dimensional holomorphic dynamical systems. Milnor is a distinguished professor at Stony Brook Uni ...
showed in 1956 that the 7-dimensional sphere admits a smooth structure that is not equivalent to the standard smooth structure. A sphere equipped with a nonstandard smooth structure is called an exotic sphere.


E8 manifold

The
E8 manifold In mathematics, the ''E''8 manifold is the unique compact, simply connected topological 4-manifold with intersection form the ''E''8 lattice. History The E_8 manifold was discovered by Michael Freedman in 1982. Rokhlin's theorem shows that ...
is an example of a
topological manifold In topology, a branch of mathematics, a topological manifold is a topological space that locally resembles real ''n''-dimensional Euclidean space. Topological manifolds are an important class of topological spaces, with applications throughout mathe ...
that does not admit a smooth structure. This essentially demonstrates that
Rokhlin's theorem In 4-dimensional topology, a branch of mathematics, Rokhlin's theorem states that if a smooth, closed 4-manifold ''M'' has a spin structure (or, equivalently, the second Stiefel–Whitney class w_2(M) vanishes), then the signature of its interse ...
holds only for smooth structures, and not topological manifolds in general.


Related structures

The smoothness requirements on the transition functions can be weakened, so that we only require the transition maps to be k-times continuously differentiable; or strengthened, so that we require the transition maps to be real-analytic. Accordingly, this gives a C^k or (real-)analytic structure on the manifold rather than a smooth one. Similarly, we can define a complex structure by requiring the transition maps to be holomorphic.


See also

* *


References

* * * {{Manifolds Differential topology Structures on manifolds